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ABSTRACT 

 

Bayesian approaches have been introduced and recommended in the inventory 

management literature. The objective of these formulations is to obtain an estimate of the future 

demand rate of products.  The Bayesian treatment typically involves a prior distribution about a 

parameter of distribution of demand. In this study, a simulation is conducted to explore the 

behavior of a proposed approach when the distribution of the parameters is different from that of 

prior distribution used in the mathematical development of the procedure. This study uses a 

distribution for the demand rate to be a mixture of two Gamma distributions. The simulation 

study reveals that this mixture can make the Bayesian approach to be no better than an approach 

in which no prior is assumed. The Bayesian approach is compared to a procedure in which the 

predicted demand rate of a product is estimated using only historical demand on that product 

without assuming any distribution about the demand rates of a pool of products. This study 

differs from previous simulation studies investigating Bayesian approaches in that this 

simulation investigates the robustness of using a gamma prior distribution when a mixture of two 

gamma distribution is the proper prior for the demand rates of a pool of products. 

 

USING BAYESIAN APPORACHES TO ESTIMATING FUTURE INVENTORY   

LEVELS  

 

A number of studies have illustrated the usefulness of a Bayesian approach in inventory 

management (Silver, 1965; De Wit, 1983; Price and Haynsworth, 1986; and Aronis, Magou, 

Dekker, and Tagaras, 2004). The importance of predicting future sales, sometimes with little 

historical data is presented in forecasting models by Willemain, Smart, Shockor, & DeSautels 

(1994), Johnston & Boylan (1996), Syntetos & Boylan (2001). The objective of Bayesian 

approaches to inventory management is to optimize holding inventory by forming a distribution 

of the demand rate. Reducing total cost due to shortages and surpluses of goods can be critical to 

a business’ strategic plan to become more efficient (Hollier, Mak, & Lai, 2002; Razi & Tarn, 

2003). Popovic (1987) proposes a Bayesian approach to inventory decision making, which 

allows the estimates of the parameters of the a priori distribution of demand rate  to be updated 

providing the foundation for this paper.  
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A Proposed Bayesian Model for Inventory Decision Making 

 

The Bayesian approach is different from the traditional Poisson approach in that it uses a 

prior distribution for demand rate λ.   Popovic (1987) proposes Bayesian approaches to inventory 

decision making related to uncertain demand rates.  Since the rate λ is not known, an a priori 

distribution of λ is assigned a gamma distribution Γ(α, ß) with the probability density function: 
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The unconditional distribution of demand is then: 
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where k = 0, 1… and 
x

n  is the number of combinations of taking x things from n distinct things.  

Thus Xt has a negative binomial distribution NB(α, ß/(ß + t)) when P{Xt = k} is denoted by pk: 
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By applying Bayes’ Rule, 
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and the posteriori distribution of λ over the first time interval I1 is then 
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Assume each time period has a length of one. The distribution of demand for period 2 is 

,
)2(

1

)2(

1
)(

!

)1(
)|(

!

1

2 1
0

1

kXk

I X
k

k
dXf

k

e
kXP        (5) 

Thus 
2IX ~  NB(α + X1, 

 2)  (ß

 1)  (ß
). It then follows that the a posteriori distribution of λ for the 

second time interval I2 if demand X2 occurs will be 
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and the distribution of demand at time interval In+1 is: 
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Determining Optimal Inventory Levels Based on Costs and Distribution 

 

The optimal inventory level in the second unit time interval I2 can be computed by 

considering the cost per unit time of a surplus C1 and a shortage C2 of an item as well as the 

demand described by the a posteriori distribution of demand (Popovic, 1987).  As additional 

demand information is accumulated, the a posteriori distribution of demand can be updated to 

improve the accuracy of the estimate. Depending on the surplus cost and shortage cost of a single 
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item, an inventory level, r1*, is determined at the beginning of the first time interval to minimize 

the cost.  The optimal value of r will make the following inequality true.   
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Furthermore, Popovic (1987) shows that the Poisson distribution can be used in place of the 

Negative Binomial distribution for the number of demands in the time period under study, 

providing the basis for the Poisson model used in this paper.  For each simulation a true alpha 

and beta are selected to define two gamma distributions that represent the true demand rate for 

each product in one of two groups.  Shortage costs and surplus costs are provided for the given 

distribution.  The ratio of surplus to shortage is the critical factor in the model. These four 

parameters are varied in a series of simulations to explore the behavior of the Bayes and Poisson 

models presented in this paper for a group of 100 products split into two groups that varies in 

size for each figure. 

Three sets of data points are constructed for each set of parameters given in the 

simulation.  For demand following a combination of two given gamma distributions, each 

defined by an alpha, the shape parameter, and beta, the scale parameter, costs are generated 

dependent on shortage and surplus costs for a group of 100 products for 10 future periods. A 

demand rate is randomly selected for each product. Once this demand rate λ is selected, “actual” 

product sales are generated using a Poisson process as is common in the literature.  Estimates of 

the demand rate are made by the Bayes and Poisson models after observing the observed sales 

for each period. From these estimates the amount of inventory to hold for the next time interval 

is computed. Expected costs from holding this amount of inventory is then determined using the 

theoretical underlying distribution of demand for that product.  Three costs are compared for 

each product: 1. Bayes model cost, 2. Poisson model costs, and 3. Optimal costs based on the 

Theoretical demand rates. 
 

SIMULATION RESULTS 

 

The results of the simulations conducted in this research are shown in the following 14 

graphs.  The simulations represented in each graph, generate total inventory costs for 100 

products, divided into two groups, using two models with the theoretical cost of demand known.  

The actual demand rate for each product in the group is generated using the gamma distribution 

with two parameters, alpha and beta.   

Each simulation investigates the effect on holding and shortage costs of the 100 products. 

Each group of 100 products consists of two lots of products. One lot has a mean demand rate of 3 

(Group 1) and the other lot has a mean demand rate of 5 (Group 2). The group with the mean of 

3 has a variance of 3 representing a more homogeneous group than the second lot with a mean of 

5.  The lot of products with a mean of 5 has a variance of 500, suggesting that despite having a 

mean of 5, the lot of products is varied. For the group of 100 products the number of products is 

varied in each lot in subsequent simulations.  In simulation 1, lot 1 ( =3) has no products and lot 

2 ( =5) has 100 products.  In simulation 3, lot 1 ( =3) has 100 products and lot 2 ( =5) has 0 

products. Simulation 2 is 50/50.  

Further more, two different cost ratios are investigated.  The first group of simulations 

(Figures 1 to 3) have a 1 to 1 ratio of surplus to shortage costs.  That is the surplus cost is the 

same as the shortage costs.  For the second group of simulations (Figures 4 to 6) the ratio of 

surplus to shortage costs is 1 to 5, so if extra inventory costs  $10 running out of will cost $50. 
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The first group of simulations (Figure 1 to 3) with equal shortage and surplus costs, see a 

gradual decrease in costs as the number of products in the lot with a mean of 5 and high variance 

is reduced. The Bayes sees the greatest advantage over the Poisson model when ever all 100 

products in the group have the same mean and variance.  For mixed lots, the Bayes advantage is 

marginal over the Poisson model. After ten simulations both models approach the theoretical 

costs, with neither model having a distinct advantage. The second group of simulations shows a 

gradual decrease in costs as the number of products in the lot with a mean of 5 and a high 

variance is reduced. The Bayes outperforms the Poisson model in each simulation of between 

about 4 and 20%. After ten simulations both models approach the theoretical costs. 

 

Simulation Graphs for Equal Costs for Surplus and Shortage (Figures 1 to 3) 

 
Figure 1. Inventory Cost Assuming Equal Costs for Surplus and Shortage of Products and No 

Products Belonging to Group 1. 

 

 

 

 
Figure 2. Inventory Cost Assuming Equal Costs for Surplus and Shortage of Products and 50% 

of Products Belonging to Group 1. 
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Figure 3. Inventory Cost Assuming Equal Costs for Surplus and Shortage of Products and 100% 

of Products Belonging to Group 1. 

 

Simulation Graphs for Unequal Costs for Surplus and Shortage (Figures 4 to 6) 

 
Figure 4. Inventory Cost Assuming Unequal Costs for Surplus and Shortage of Products and No 

Products Belonging to Group 1. 

 

 

 
Figure 5. Inventory Cost Assuming Unequal Costs for Surplus and Shortage of Products and 

50% of the Products Belonging to Group 1. 
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Figure 6. Inventory Cost Assuming Unequal Costs for Surplus and Shortage of Products and 

100% of the Products Belonging to Group 1. 

 

CONCLUSIONS 

 

The results of this study are different from previous simulations in that a prior 

distribution that is a gamma is used to approximate the mixture of two gammas. All graphs show 

that as the number of time units increases both the Poisson and Bayes model approach the 

theoretical values, since better estimates can be produced as historical information is gathered.  

Furthermore, the graphs suggest that the behavior of the actual data being forecasted will 

determine which model works best when forecasting sales.  The comparisons of the simulations 

in group 1 to group 2 are the most striking. When the surplus and shortage costs are similar, even 

for lots with different mean demands and variances, the advantage of the Bayes model over the 

Poisson model is marginal at best. However, when the surplus and shortage costs are not similar, 

that is one is much more than the other, the Bayes model provides estimates that are closer to the 

theoretical values of between 4% and 20% depending on the lot mix. 

The proposed models are appropriate for new products with very little or no demand 

history to help determine stocking decisions at the introductory point of the product.  Additional 

simulations are required to determine which range of demand rates is appropriate for each model.  

Very high or very low demand rates could alter the proposed selection guidance. 
 

Limitations 

 

Many variables will affect the outcome of the simulations.  The model predicts one 

demand rate for all items that have yet to experience customer demand.  Demand for each item is 

assumed to be independent. However since family of items are used to forecast demand rate, this 

might not always be the case.  It is possible that usage of some items could be correlated to other 

items and would not be independent.  The number of items within a family with and without 

sales will affect the accuracy of the model.  Furthermore, the model assumes that the demand 

rate for all items in each lot comes from the same distribution (gamma distribution with the same 

parameters).  If the actual population demand rate changes for items in the same family, the 

model will be affected. External factors could change the demand rates as well.  The model 

assumes that parts are not subject to external factors. 
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